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Abstract. The optimal algorithm for on-line learning in the treeK-parity machine is studied.
We introduce a set of recursion relations for the relevant probability distributions, which permit
study of the generalK case. The generalization error curve is determined and shown to decay to
zero for largeα aseg ≈ α−1 even in the presence of noise. There is no critical noise level. The
dynamics of on-line learning is studied analytically near the origin. In the absence of previous
knowledge, the learning dynamics has a fixed point atα = 0. Previous knowledge is needed in
at leastK − 1 branches for the learning to take place.

1. Introduction

A possible approach to general machine learning theory is to concentrate on the statistical
properties of specific artificial neural network simple models. This is done in the hope
that it will enable us to identify universal underlying behaviours and features that might
transcend the limited scope of the models which can be analytically studied. Among the
various possible aspects of learning, we will look at the ability of generalization in on-line
supervised [1, 2] learning from a teacher network. Given the limitation to studying the
generalization ability, the question that can be addressed is not what is the performance of a
predetermined learning algorithm, but rather which algorithm will have the best performance
under certain predetermined conditions.

The variational determination of the optimal algorithm, in the sense of generalization,
has been done for several particular cases which include the boolean [2, 3] and linear [4]
simple perceptrons in the conditions of both on- and off-line learning. The optimized on-
line learning has also been addressed for those networks in the presence of noise [5, 6] and
in the case of drifting rules [7, 8]. The extension to networks with hidden units such as
the committee machine was presented in [9]. As might be expected, several qualitative
features are shared by the different optimal algorithms. These include the fact that optimal
algorithms are not the same throughout the learning process, but depend on the stage of
learning. The common role played by the surprise a new example may bring, as well as
the confidence on its correct classification, have been previously stressed. What should
not be taken for granted, however, is the fact that several quantitative features are found
to be exactly the same for different machines. Among these we mention the 0.88α−1

decay for the on-line generalization error in the absence of noise for the treeK-committee
machine [9], independently ofK, whereα is the ratio of the number of examples (P ) to
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the total number of adjustable connections (N ). It has also been verified, from variational
arguments, that the optimal on-line energy is closely related to Bayesian ideas [10]. In
several different architectures, identical scaling properties of the learning process have also
been identified. In this paper we will present the results of such an approach, i.e. variational
determination of the optimal on-line learning algorithm, to the case of the parity machine
with tree architecture andK hidden units.

On-line learning in the presence of noise in theK = 2 parity machine has been recently
studied by Kabashima [11] for the so-called ‘least action’ algorithm (LAA) proposed initially
by Mitchison and Durbin. While they [12] study memorization of random examples by
doing simulations of an iterated version of the LAA, in [11] the generalization ability for
the on-line version of the LAA was studied in the presence of output noise.

The three distinctive features that he found were, first, that in the absence of noise, ‘an
ability to generalize emerges as the rescaled length of the connection vectorJ reaches a
critical valueJc’ (non-zero), as long as the initial conditions are such that{ρk}, the overlaps
between student and teacher sub-branches, areO(1). Second, that the generalization error
decays to zero asα−1/3 for large α and third, that there is a critical noise level beyond
which the generalization error does not decay to zero.

We will show that the optimal learning algorithm, which is in the class of what has been
called the ‘expected stability’ algorithms, gives for those three features a different behaviour.
First there is no critical lengthJc; that is, if the initial conditions are such thatρ is O(1),
generalization improves as soon as learning starts. Second, for largeα the generalization
error decays as 0.88α−1 in the absence of noise, but, third, even in the presence of output
noise the error decays asymptotically to zero, as the inverse ofα for any noise level. These
show that some of the features found in [11] are due to the particular choice of the learning
algorithm and disappear for the optimal one.

While the optimized algorithm for the parity machine (OA) resembles the LAA of
Mitchison and Durbin in some of its features, the differences are responsible for the vastly
improved behaviour. As for other optimized algorithms, it relies, for improved performance,
on elements that can be dubbed surprise and confidence. The use of such elements is shared
by the LAA, but the OA also uses a measure of the performance. This means that the
algorithm is not the same throughout the learning activity but changes with ‘time’ or in the
case of time-dependent drifting rules it adapts to changes.

This paper is organized as follows. In section 2 we present the differential equations
that govern on-line learning in the parity machine for an arbitrary algorithm in the presence
of noise. A simple variational argument leads to the OA. In section 3 we analyse its
performance near the origin, while the asymptotic behaviour is studied in section 4. In
section 5 the modulation function is analysed and some final comments included.

2. Learning dynamics

The parity machine with non-overlapping receptive fields has been previously studied in
[12, 11]. We describe it here once again just to establish our notation. It consists ofK

branches, each one a single layer perceptron ofN/K inputs. Every branch perceptron is
characterized by anN/K dimensional synaptic weight vectorJk, and for a given input
(S = (S1, . . . ,SK) whereSj is N/K dimensional) the output is6 = sgn(

∏K
j=1 Jj · Sj ).

We look at possibly the simplest supervised learning scenario, where the task to be learned
is defined by a teacher network of the same architecture (characterized by synaptic weights
Bk, B2

k = 1) and the examples are drawn from a known distribution. For simplicity we will
perform the calculations for a uniform distribution, with〈Ski〉 = 0 and〈S2

ki〉 = 1. Certainly
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one could look at more structured distributions and also study the case of unsupervised
learning as has been done in [13, 14] for the perceptron.

The aim of learning is to determine a set ofJ vectors that define the student net
such that it approximates the teacher network, based solely on information contained in the
learning setL{Sµ, ξµ}µ=1...P . We consider the possibility of noise corrupted outputsξµ so
that instead of the true output for a given input, we only have access to theξµ variable
and to the conditional probabilityP(ξµ|6µ). Several noise sources can be considered. We
look here only at output noise, so that

P(ξµ|6µ) = (1 − χ)δξ,6 + χδξ,−6 (1)

whereχ is the probability that a given output6µ of the teacher is flipped.
Several different performance measures can be defined. The training erroreT measures

how well the student network can operate over previously seen examples. The generalization
erroreG measures how well the student approximates the noiseless teacher and the prediction
error eP measures the probability that for a new independent input vector, the noisy output
is not correctly predicted. It is easy to show that

eP = χ + (1 − 2χ)eG. (2)

As is well known, for this feedforward type of architecture, the generalization
error can be expressed in terms of order parameters which describe the student–teacher
distance. These so-called overlapsρk, can be shown to be self-averaging quantities in the
thermodynamic limit, and are given byρk = Bk ·Jk/Jk, whereJk = ‖Jk‖. For the uniform
distribution of examples, the internal fieldshk = Jk ·Sk/Jk andbk = Bk ·Sk in the student
and the teacher nets, respectively, are random Gaussian correlated variables with zero mean
and correlationρk, distributed according to

P(bk, hk) = 1

2π

√
1 − ρ2

k

exp

{−b2
k − h2

k + 2hkbkρk

2(1 − ρ2
k )

}
. (3)

The generalization error of the parity machine

eK
G(ρ1 . . . ρK) =

∫ K∏
k=1

dbk dhk P (bk, hk)θ

(
−

K∏
i=1

bihi

)
(4)

satisfies the following recursion relation for tree architectures

e
(K)
G (ρ1 . . . ρK) = e

(K−1)
G (ρ1 . . . ρK−1) + e

(1)
G (ρK) − 2e

(1)
G (ρK)e

(K−1)
G (ρ1 . . . ρK−1). (5)

This can be also written as

e
(K)
G (ρ) = 1

2

[
1 −

K∏
k=1

(1 − 2e
(1)
G (ρk))

]
(6)

wheree
(1)
G (ρk) = π−1 arccosρk is the single branch perceptron generalization error which

reduces to the expression given by Opper in [15] in the symmetric case. Under symmetric
conditions, whereρk = ρ for all k, this shows that the sequence of functionse

(K)
G (ρ)

converges uniformly, in the limitK → ∞, to 1
2 for any ρ except atρ = 1. Non-uniform

convergence atρ = 1 also occurs in the treeK-committee machine error, but there it
signals crossover to a different asymptotic regime, whereas in this case it shows that the
parity machine does not learn at all in the infiniteK case. At this point we just add that,
for this distribution of examples, the generalization error is monotonically decreasing with
ρ.
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Supervised on-line learning without iterations, that is, by single presentation of each
example, is a discrete dynamic stochastic process, where at each time step a random example
is used to modify the network’s couplings:

J
µ+1
ki = J

µ

ki + 1

N
F

µ

k S
µ

ki . (7)

The functionF
µ

k defines the algorithm and is a measure of the importance that should be
given to the example, that is, of the amount of relevant information it carries. We refer to it
as the modulation function. Averaging over the possible choices of the example and taking
the thermodynamic limit, the infinite set of discrete equations is simplified into 2K coupled
differential equations for the lengths of the coupling vectors and the order parameters

dJk

dα
= Jk

〈(
(F

µ

k )2

2KJ 2
k

+ F
µ

k h
µ

k

Jk

)〉
(8)

and

dρk

dα
= ρk

Jk

〈
F

µ

k

(
b

µ

k

ρk

− h
µ

k − F
µ

k

2KJk

)〉
(9)

where, dropping the indexµ for simplicity,

〈(· · ·)〉 =
∑
ξ=±1

∫
P K(bk, ξ, {hi}) dbk

[ K∏
i=1

dhi

]
(· · ·). (10)

Optimization in the sense of maximal generalization ability can be obtained by
maximizing the rate of growth of dρk/dα. It leads to the following choice of modulation
function:

Fk = KJk

〈(
bk

ρk

− hk

)〉
bk |ξ,{hi }

. (11)

This formal expression holds for any choice of the distribution of examples, although it
is only the optimal modulation function in the case where the distribution of examples leads
to a generalization error which decreases monotonically withρ. In this work, as it is not
unusual in the literature of the statistical mechanics of neural networks, it will be assumed
known. The effects of not knowing exactly the distribution will not be considered here. The
average is taken overP K(bk|ξ, {hi}), that is, over the possible internal fields in the teacher
network conditioned on the available noise-corrupted-outputξ and the student internal fields.
This shows immediately that the optimal algorithm is non-local in the sense that, in order to
train one branch, it needs information about the internal state of the other branches. Actually
it is simple to show that non-locality is essential since local algorithms in the parity machine
never leave the ground. This should be contrasted with tree committee machines, where
local algorithms may still achieve anα−1 decay [6]. Equation (11) has the same formal
structure of the analogous function in the tree committee machine. Only the conditional
probabilityP K depends on the network’s architecture. To calculateP K(bk|ξ, {hi}) we only
needP K(ξ |{hi}), which is simple to obtain in terms of noiseless conditional probabilities
P K

0 (6|{hi}), since it is given by

P K(ξ |{hi}) = (1 − χ)P K
0 (6 = ξ |{hi}) + χP K

0 (6 = −ξ |{hi}) (12)

and forK > 1, P K
0 (6|{hi}) satisfies the recursion relation

P K
0 (6|{hi}) = P 1

0 (1|hk)P
K−1
0 (6|{hi}i 6=k) + P 1

0 (−1|hk)P
K−1
0 (−6|{hi}i 6=k). (13)
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Only at this point do we need to make explicit the distribution of examples. As we
have already mentioned they are to be chosen independently, from a uniform distribution
with 〈Ski〉 = 0 and〈S2

ki〉 = 1, then

P 1
0 (6|hk) = H

(
−6hk

λk

)
(14)

whereH(x) = ∫ ∞
x

Dt , Dt = (2π)−1/2 exp(−t2/2) dt andλ = ρ−1
√

1 − ρ2.
The optimal modulation function can either be obtained from equation (11) or

alternatively by using the on-line optimal energy termEopt = −λ2 ln P K(ξ |{hi}) through the
equationF i

k = −SiJ (∂Eopt/∂Ĵk). For a discussion of this point in the committee machine
see [6]. The result is

Fk = K√
2π

Jkλke−h2
k/2λ2

k (1 − 2χ)
P K−1

0 (ξ |{hi}i 6=k) − P K−1
0 (−ξ |{hi}i 6=k)

P K(ξ |{hi}) . (15)

Note that

P K(ξ |{hi}) = χ
∑
{−}

[ K∏
i

H

(
−εihi

λi

) ]
+ (1 − χ)

∑
{+}

[ K∏
i

H

(
−εihi

λi

) ]
(16)

where the notation{−} and {+} means that the sums are taken over all possible
configurations of the set{εi = ±1} subject to the constraints

∏
i εi = −ξ and

∏
i εi = +ξ ,

respectively. The numerator in equation (15) can be written as

P K−1
0 (ξ |{hi}i 6=k) − P K−1

0 (−ξ |{hi}i 6=k) = ξ
∏
i 6=k

[
H

(
−εihi

λi

)
− H

(
εihi

λi

)]
. (17)

The order parameter differential equation is then

dρk

dα
= K

2π
ρkλ

2
k(1 − 2χ)2

∫
Dhke−h2

k/λ
2
k

∏
l 6=k Dhl [H(− hl

λl
) − H(hl

λl
)]2

P K(1|{hi}) . (18)

As is the case for other optimized dynamics, it is simple to see that the evolution of the
lengths is described by a set of identical equations

1

Jk

dJk

dα
= 1

ρk

dρk

dα
. (19)

We now turn to the analysis of the dynamics in both the small- and large-α limit.

3. Escape from the fixed point

Note the factors [H(− hl

λl
) − H(hl

λl
)] inside the integrals of equation (18) forK > 1, which

vanish atρl = 0. If the learning process starts fromtabula rasa, on-line learning will not
work. To analyse the behaviour at the early stages of learning we have to go beyond the
fully symmetric approximation. The differential equations in the small-α limit are

dρk

dα
= K

2

(
2

π

)K

(1 − 2χ)2 1

ρk

∏
l 6=k

ρ2
l . (20)

This shows thatρk = 0, for any two or more branches, is a fixed point of the dynamics.
If at most only one branch has zero initial overlap, but the rest areO(1), the system will
manage to learn on-line. Of course, forK = 1, ρ = 0 is not a fixed point. ForK > 1
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the system needs previous knowledge in order to learn on-line. ForK = 2, let the initial
conditions beρ2

1(0) = ε1 andρ2
2(0) = ε2. The solution is

ρ1,2 =
[(

ε1 + ε2

2

)
e32α ±

(
ε1 − ε2

2

)
e−32α

] 1
2

with 3K = K(2/π)K(1 − 2χ)2. For generalK, suppose there is previous knowledge for
all branches. Callρ2

k (0) = εk 6= 0. DefiningEk = ∏
i 6=k εi , the evolution of the overlaps is

given by

ρk =
[
εk + Ek3Kα + (3Kα)2

2
εkE

2
k

∑
i 6=k

1

ε2
i

+E3
k

6
(3Kα)3

(
2ε2

k

∑
i 6=j 6=k

1

ε2
i ε

2
j

+
∑

i

1

ε2
i

)
+ O[(3Kα)4]

] 1
2

. (21)

Physically, the fixed point of the on-line dynamics is related to the retarded learning
phenomenon which appears even in the optimal off-line procedure [16]. Off-line learning
only works if a threshold ofαcN examples is surpassed. This means that for on-line learning
to work, some previous knowledge is needed in the form of a non-zero initial condition.
For finite N , a random choice of initial couplings would suffice to furnish the ‘previous
knowledge’ since it will giveρ(0) ≈ O(N−1/2). However, the differential equations are
correct to O(1) only. In order to test the approximations that lead to (18) the initial
conditions have to be such thatO(N−1/2) � ρ(0) � 1.

Figure 1 shows the results of numerically integrating the differential equations for the
special caseK = 2 and of simulations of the learning process.

0 10 20 30

α

0.0

0.1

0.2

0.3

0.4

0.5

e G

0 10 20 30

α

0.0

0.1

0.2

0.3

0.4

0.5

e G

(a) (b)

Figure 1. Generalization error obtained from numerical integration of dρ/dα (full curves),
simulation using the overlap (•) and J (◦) for (a) N = 302 and 0.18 < ρ < 0.22, (b)
N = 1002 and 0.09 < ρ < 0.11.

For each set of data, a window was defined by choosing two slightly different limiting
initial conditions. The two lines of each set are the results of numerically integrating
the differential equations (18) for those initial conditions. In the simulation, the student
networks’ initial couplings were chosen randomly, those whose initial conditions were
inside the predeterminedρ-window were kept. The lengths of the coupling vectors were
normalized according to equation (19). Two sets of simulations were done, one with the
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modulation function which uses the value ofρ and another withJ in its place. The
simulations and the numerical integrations are seen to agree quite well.

The origin of the retardation is due to the symmetry presented by this machine [17].
If in an even number of branchesJ is transformed into−J , the output is unchanged. In
the fully connected smooth committee machines the existence of plateaux in the learning
dynamics is also due to symmetries between the different branches. In the escape from
symmetric plateaux in both cases, finite size effects are most important and the usefulness
of this type of description, by a set of differential equations, is questionable. Outside its
immediate vicinity, however, it is an excellent tool for understanding the learning dynamics.

The relation between the retarded learning effect in off-line learning and the repulsive
fixed point at zero overlap in the dynamics of on-line learning seems to be general. It has
also been detected in the unsupervised learning of a structured distribution of examples by
a perceptron [18, 19].

4. Asymptotic behaviour

In the limit α → ∞, the overlapsρ → 1 and the generalization error can be written as
e
(K)
G (ρ) = (K/π) arccosρ. Under these conditions theρ-differential equation is

dρ

dα
= K

2π

(1 − ρ2)
3
2

ρ2
I (χ)

where

I (χ) = (1 − 2χ)2
∫

Dx
e−x2/2

Ĥ (x)

and for convenience we definêH(x) = χ + (1 − 2χ)H(x).
Define αp = Kα, which measures the number of examples divided by the number of

couplings in one single perceptron branch. In terms of this scale, every perceptron branch
learns at the same rate independently ofK. If the single layer perceptron error decays
asymptotically asC/αp , then the generalization error of theK-parity machine will be

e
(K)
G (ρ) = K

C

αp

= C

α
(22)

independently ofK. So theK-parity machine will learn with a much higher error than each
individual branch; actually it is the sum of the errors. However, the correct scale to measure
the decay isα and notαp. This leads to cancellation of theK factors leaving the nominal
error independent ofK. This most interesting feature is shared by the treeK-committee
machine and will occur for any optimized algorithm [20] for treelike architectures. It is
easy to show thatC = 2/I (χ). This is the same coefficient found in [5, 6] for the simple
perceptron. After all, this is aK-independent result and the perceptron is aK = 1 parity
machine. In the absence of noise this leads to the ubiquitous 0.88α−1 decay which is exactly
twice the Bayes optimal. It is interesting that even in the presence of noise the error decays
with the optimal power decay but with a larger coefficient, sinceI (χ) ≈ √

2(1 − 2χ)2 for
largeχ (near 1

2). This shows that there is no critical noise level. To implement the optimal
algorithm we need to know the actual noise level. This is certainly hardly the case. Noise
level evaluation by on-line monitoring and the robustness to noise level determination, both
in the case of output as well as weight noise will be the topic of a forthcoming work. At
this point we can just claim that these results represent mean-field lower bounds for the
generalization errors.
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5. The modulation function

The modulation functions have three relevant properties that we want to note. First of all,
the modulation functions, and thus the learning algorithm, depend explicitly onρ. From
equation (19), it can be seen that the values of the synaptic vectors length can be used
instead. We want to stress the fact that this dependence implies that the optimal algorithm
is not the same throughout the learning process. The algorithm that should be used by a
student in an early stage is not the same as one that a rather experienced one uses. The
evolution of the modulation functions scales withρ in a simple manner and figure 2 shows,
for K = 3, the rescaled modulation functionsFk/(λJk) in terms of the rescaled internal
field y1 = h1/λ, for a particular choice ofy2,3 = h2,3/λ.

–5.0 –3.0 –1.0 1.0 3.0 5.0
y1

–1.0

1.0

3.0

5.0

7.0

F
k 
/(

λJ
k)

F1/(λJ1)
F2/(λJ2)
F3/(λJ2)

Figure 2. rescaled modulation function in terms of the rescaled internal field in the first branch
y1 for a K = 3 parity machine.

The second feature is related to what can be called the value of information or the
importance that a new example has. For smallα, whether an example is correctly classified
or not is not very relevant. In both cases the same order of magnitude synaptic changes
occur. However, later on, the fact that an example is wrongly predicted implies that at
least one modulation function is appreciably large. Correctly classified inputs lead to small
changes.

If, for a given input, the internal fieldshk are large, then the student can be said to
be very confident in the probability of correctly predicting its output. A surprising result,
meaning a wrong output of an easy example, leads to a high modulation on at least one
branch. However, a very confident prediction by one branch that leads to an overall wrong
output may be explained by some other factor, leading to an attenuation of the surprise
factor. The presence of output noise, which we have studied here (see also [5, 6]), or a less
confident branch may be blamed for wrong predictions. This leads to the third characteristic
we want to stress, which is blame attribution crossover. Figure 2 shows a noiseless situation
in which the teacher output is6 = 1, andy2 = −2, y3 = −3. Therefore, wheny1 > 0 the
student is giving the correct output. Wheny1 starts decreasing,F1 starts increasing, since
for y1 < 0 the prediction is wrong. Fory1 > −2, we are in a situation where the least
confident branch, i.e. number 1, gets the highest modulation. Asy1 goes below−2, blame
attribution for the wrong output crosses over from the first to the second branch. The third
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branch starts getting a fraction of the blame asy1 gets larger, in module, thany3, but since
it is always more confident than the second branch, it never gets a high modulation.

This discussion certainly agrees with the rationale behind the least action algorithm of
Mitchison and Durbin as implemented by Kabashima for theK = 2 parity machine. But
it is important to notice, along with their similarities, their main differences. First, the
algorithm changes with ‘time’. It depends onρ as discussed above, which is in principle
an unavailable quantity. We have just suggested, among the many possible solutions to this
problem, substituting forρk the value ofJk. But sinceρk can be estimated on-line [8], we
have a truly adaptive algorithm which can adjust to changes in the environment or drifting
teachers. Second, crossings are not sharply defined. There are regions, e.g.y1 ≈ −2 in
figure 2, where all branches are getting contributions. The fact that no information is being
discarded leads to theα−1 decay for the generalization error, as opposed to theα−1/3. It
also makes the error decay to zero, with the same exponent in the presence of any noise
level belowχ = 1

2.
The main criticism that can be raised about this kind of approach is its dependence on

some unknown quantities. These are the distribution of examples, the overlaps and the noise
level. All of these can be, to a large extent, estimated on-line, as the learning procedure
takes place. The characteristics of the resulting algorithms will be the subject of future
work.
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